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Introduction

Density-functional theory (DFT) is a computational quantum mechanical modelling method used in
physics, chemistry and materials science to investigate the electronic structure (principally the
ground state) of many-body systems. CASTEP (CAmbridge Serial Total Energy Package) is a
shared-source academic and commercial software package utilising DFT with a plane wave basis
set to run ab-initio calculations of the electronic properties of materials.

Starting from the many-body wavefunction, the Born—Oppenheimer approximation is employed
where the nucleus is considered as static. Using Bloch's Theorem a wavefunction with a cell-
periodic factor and a phase factor so that the basis functions are orthogonal and it is easy to
perform a Fourier transform from real to reciprocal space and vice versa. Along with plane waves
and iterative diagonalisation methods (via conjugate gradient or blocked Davidson algorithms),
pseudopotentials are essential to the CASTEP code for reducing the computational expense of the
calculation. Pseudopotentials replace the atomic nucleus and the core electrons by an effective
numeric potential.
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Equation 1: Many body Schrédinger equation

Direct methods for solving the Schrodinger equation are based on the expansion of Slater
determinants. Hartree-Fock and post-Hartree-Fock methods require huge computational efforts
and are virtually impossible with more complex systems. As such, using DFT, the properties of a
many-electron system can be determined by using functionals, i.e. functions of another function. In
the case of DFT, these are functionals of the spatially dependent electron density.
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Equation 2: Density

The major problem with DFT is that the exact functionals for exchange and correlation are not
known, except for the free-electron gas.

EXPA[n] = /Ex(‘(n)n(r) d®r.

Equation 3: Exchange correlation

However, approximations exist which permit the calculation of certain physical quantities quite
accurately. One of the simplest GGA (generalised gradient approximation) is the local-density
approximation (LDA), where the functional depends only on the density at the coordinate where the
functional is evaluated. The Perdew-Burke-Ernzerhof (PBE) functional is also commonly used as it
is a non-empirical functional with reasonable accuracy over a wide range of systems.

The basic steps in a DFT calculation are: 1) defining the system and its boundaries, 2) selecting a
functional (i.e LDA or PBE), 3) solving the Kohn-Sham equations (a set of coupled equations that
describe the electronic structure) to obtain the electronic density and energy of the system, and 4)
using the obtained electronic density to calculate other properties of the system, such as forces,
charge density, and dipole moments.

Method:
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In this project, the phase stability of Al, Si and Ti are calculated in four different cubic crystal
structures: sc (simple cubic), bce (body-centered cubic), and fcc (face-centered cubic), diamond.
Then the bandstructures of fcc-Al, fcc-Si, fce-Ti are calculated at their equilibrium lattice parameter
by calculating the energy against k in reciprocal space. By plotting graphs of energy vs lattice
parameter, the structure with the EV-curve of the lowest energy per atom can be identified to be
the most stable. CASTEP calculated the internal energy for a primitive unit cell. The primitive unit
cell sc, fcc and bee contain 1 atom each. Only the diamond primitive unit cell contains 2 atoms as
such the internal energies halved and plotted with the other structures.

The relative stability of AISi and AlTi in four different crystal structures: rocksalt (NaCl), Zincblende
(ZnS), Ceasium Chloride (CsCl), and L1o (CuAu) is also examined to determine the most stable
crystal structure and the heat of formation of AISi and AlTi. The equation involving internal energies
of Al, Si and Ti in their most stable state is used to determine the heat of formation:

. e 1 . _
AH(AIS) = E(AISI") = = [Ea(Si%) + Ei(Al)]

Equation 4: Heat of formation of AISi
AH(AIT) = Ea(AITi") = = [Ea(Ti') + E(AL)]

Equation 5: Heat of formation of AITi

For crystal structures of elements that were not given, the EV curves were plotted and a 4th order
polynomial is fitted to find the equilibrium lattice parameter (egm_a) and the code was run again
with the eqm_a. Object oriented programming was used to accelerate code development for this
project due to repeated similar calculations.

Results

The results of minimum energies and lattice parameters are detailed below. The CASTEP method
of calculating lattice parameters was verified as 3.9 and 5.43 A for fcc and diamond-Silicon and it
agreed with the literature.

Element/structure (a) Al Si Ti

SC 2.7 25 26
FCC 3.2 3 32
BCC 4 3.8 39
Diamond 58 54 56

Table 1: Lattice parameters (a) for Al, Si and Ti in sc, fcc, bcc and diamond crystal structures

Alloy/structure (a) AlSi AlTi

Rocksalt 51 5.1
Zincblende 5.6 6
Ceasium Chloride 3.1 3
L1o 28 29

Table 2: Lattice parameters (a) for AlSi and AlTi in rocksalt, zincblende, ceasium chloride and L1o
crystal structures



Element/structure (int E) Al

SC
FCC
BCC

Diamond

Si
-109.258
-109.737
-109.723
-108.986
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Ti
-168.621 -1590.257
-168.509 -1591.171
-168.711 -1590.924
-169.022 -1588.673

Table 3: Minimum internal energies (int E) for Al, Si and Ti in sc, fcc, bcc and diamond crystal
structures

Alloy/structure (int E)
Rocksalt

Zincblende

Ceasium Chloride
L1o

AlSi

AlTi
-278.258 -1700.452
-277.918 -1697.800
-277.852 -1701.476
-278.479 -1701.832

Table 4: Minimum internal energies (int E) for AlSi and AlTi in rocksalt, zincblende, ceasium
chloride and L1o crystal structures
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Figure 1: ECut and K-points convergence
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The relative stabilities can be seen by plotting the energy per atom curves.
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Figure 2: Al E-V curve
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From the figure, BCC and FCC have minimum energies that are close together but FCC has the
lower minimum energy. As such Al takes the form of FCC which is consistent with experiment.
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For Ti, the FCC structure results in the lowest energy per atom.
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The bandstructures were calculated at Ecuts of 350 and kpts of (12,12,12).
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Figure 7: fcc-Ti bandstructure
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None of the element’s have bandstructures that exhibit semiconducting properties.
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For both AISi and AlTi, the L10o structure results in the lowest energy per atom.

Structures

fcc-Al

diamond-Si

bee-Ti

L10-AlSi
L1o-AlTi

Discussion

Relative stabilities

Internal Energies

-109.7
-169
-1590.9
-278.5

-1701.8
Table 10: Heat of formation in kJ/mol

Heat of formation

not calculated

not calculated

not calculated
-139.1
-851.5
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The relative stabilities of elements and alloys are not determined by the lattice parameter but are
much more likely due to how close atoms are together and the strength of the bonds created.
There is an interplay of the attraction between the nuclei and the sea of delocalised electrons but
also the repulsion of nuclei. CASTEP calculates the energies which encompasses all of these
interactions.

Heat of formation

The heat of formation of AlTi is much greater than AISi as the internal energy of Ti is much greater
than that of diamond Si. This is due to the electronic configuration of Ti as it has many delocalised
electrons resulting in very strong metallic bonds. From equation 5, the internal energy of the
constituent elements contributes greatly to the heat of formation as the bonds of Ti have to be
overcome first before forming the alloy.

Bandstructure discussion

The Ecut was run at 350eV and kpts at (12,12,12), the results were converged with respect to the
basis-set and Brillouin zone sampling. As fcc-Si is not the most stable crystal structure, it can be
concluded that crystal structure diamond which is the most stable and used in industry is
responsible for the semiconducting properties.The fcc-Si and fcc-Al bandstructures are very similar
as they have the same electronic configuration. The fcc-Ti bandstructure is very different to the
other two as the conduction electrons are more shielded. By observation, the peaks in the
bandstructures of fcc-Al and fcc-Si are much more narrow, meaning the 2nd derivatives are much
greater. As such, the effective mass of the electrons in fcc-Al and fcc-Si is much lower than that of
fce-Ti.

AlSi and AlTi discussion

L1o is a tetragonal distortion of the fcc structure. The atoms are at the positions of a face centered
cubic lattice when ¢ = a. Indium (A6) has a related structure. The L10 crystal structure was the
most stable for AlSi and AITi. This is likely due to the misfit between the Al, Si and Ti atoms
distorting the lattice. This tetragonal distortion usually results in increased in yield strength.

Error Analysis:
Any errors would arise from incorrect fitting parameters or insufficient convergence with ECut and
kpoints.

Outlook on using CASTEP in a broader multiscale modelling
approach

The relative stabilities provides information on the crystal structure materials occupy which dictates
many material properties that can be explored up the length scale with molecular dynamics. The
bandstructures calculated provide information on the electrical properties of materials. This can be
a method to screen for materials. The heat of formation provides information that can be used in
CALPHAD approaches. By using CALPHAD to study what phases are stable via different
processing routes, each phase can be screened using CASTEP for desired properties. ESPEI is a
software package designed to create CALPHAD databases by combining experimental data and
density functional theory methods such as CASTEP. The movement of information up and down
the length scales allows for a rigorous exploration of materials for scientific and engineering
purposes.

Summary and conclusion

This project calculated relative stabilities of Al, Si, Ti, AISi and AlTi determining that the most stable
structures were fcc, diamond, fcc, L1o and L1o respectively. By calculating the bandstructures of
fcc-Al,Si and Ti, all indicated conducting properties. Effective mass of electrons were also
qualitatively inferred by analysing the width of the peaks. The heat of formation was also
calculated.
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An introduction encompassing a brief description of the modelling method, its underlying
theory and how it is implemented on a computer. [7]

Molecular dynamics (MD) is a computational method typically used in material science, biophysics
and chemical physics for analysing the time dependent movements of atoms and molecules. Using
the Verlet algorithm, positions and velocities of particles at previous time steps to calculate their
new positions with Newton’s equations of motion. Next, the interatomic potentials and molecular
force fields, forces and potential energies are numerically calculated to determine the trajectories
of atoms and molecules.

Due to the many body nature of complex molecular systems, analytically determining the
properties is impossible. MD simulation circumvents this problem by making use of statistical
mechanics, using numerical methods and minimising errors by appropriate choice of algorithms
and parameter optimisation. This allows MD simulation to be used to determine the macroscopic
thermodynamic properties of the system studied. Time averages of an ergodic system are
equivalent to the microcanonical ensemble averages.

This project demonstrates the effectiveness of MD in calculating materials properties such as the
specific heat (cp), internal energy and radial distribution functions (RDFs) for Aluminium (Al) and
Copper (Cu). The data is then used to determine the melting point of the material.

Method:

Firstly, the code was run to find the most stable structures of Aluminium (Al) and Copper (Cu).
Next, the convergence was found for the cp, internal energy and RDFs for Al and Cu with the
number of atoms and time steps. Finally, using the convergence parameters, the cp, internal
energy and RDFs were calculated for a range of temperatures. By analysing where the cp spikes
and the gradient of the internal energy changes, the melting point is determined.

Results:

Finding the equilibrium structure for Al and Cu to use in simulation
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Figure 1: Relative stabilities of Al and Cu

The lattice parameters for fcc-Al and fcc-Cu were calculated to be 4.045A and 3.61A which is in
agreement with the literature.

Convergence of cp, internal enerqy and RDF with atoms and timesteps
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Figure 2: Convergence of cp against no. of atoms for Al and Cu
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Figure 4: Convergence of internal energy with number of atoms for Al and Cu
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Figure 5: Convergence of internal energy against timestep for Al and Cu
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Figure 7: Plots of RDF for Cu for 1, 8 and 125 atoms
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Figure 8: Convergence of Al RDF with timestep
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Figure 9: Convergence of Cu RDF with timestep

It was found that 512 atoms and 10,000 time steps is far more than sufficient for convergence.
These parameters are used for the following results.

Cp. internal enerqy and RDF against temperature results
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Figure 10: Plots of cp against temperature for Al and Cu
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Figure 11: Plots of internal energy against temperature for Al and Cu
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Figure 12: Al RDF for 631, 1065 and 1114K
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Figure 13: Cu RDF for 1065, 1555 and 1666K

From the graphs, by considering the start of the spike in cp and change in gradient in the internal
energy plot as the melting point (m.p.), it can be determined that the m.p. of Al and Cu are around
1050 and 1550K. The experimental m.p. of Al and Cu are 933.3K 1358K resulting in percentage
errors of 12.5% and 14.1%.

The cp, internal energy and radial distribution functions are calculated for 30 points between 100 to
1500K for Al and 40 points between 100 to 2000 for Cu.

Discussion
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The close to vertical behaviour of the internal energy at the melting temperatures are due to the
energy being absorbed to overcome the metallic bonds of Al and Cu as the latent heat of fusion. It
can be seen in the RDFs at different temperatures of Al and Cu when they start to deform and end
up very similar when fully melted. This is because the RDFs simply reflect that of nearest
neighbour behaviour that all liquids which are inherently amorphous possess.

Error analysis:
Any errors in the MD simulations would likely arise from not including all potentials or not using

small enough timesteps.

Outlook section on how the project could be embedded in a broader

multiscale modelling approach

The method calculates the melting point for materials by using the internal energy, specific heat
and the radial distribution function. Information about the radial distribution function can be inputted
into Gaussian which allows for the 3D viewing of the structure and understanding chemical
mechanisms. The melting point of a material and phase is important to find the liquidus for
CALPHAD. The specific heat is used to create CALPHAD databases and finite element
simulations. In finite element simulations the temperature increase by absorption of energy affects
the thermal expansion which determines the stresses of a simulated component. For alloys, the
temperatures for the start and end of the spike in the cp and change in gradient of internal energy
correspond to the solidus and liquidus lines in phase diagrams.

Summary and conclusion

Molecular dynamics has been demonstrated to be convergent and accurate in calculating the
melting point, internal energy, specific heat and radial distribution function of single element
lattices. It is also effective at determining the relative stabilities.
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